Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Blood ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635762

RESUMEN

Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Despite extensive data supporting the use of axi-cel in patients with LBCL, outcomes stratified by race and ethnicity groups are limited. Here, we report clinical outcomes with axi-cel in patients with R/R LBCL by race and ethnicity in both real-world and clinical trial settings. In the real-world setting, 1290 patients with R/R LBCL who received axi-cel between 2017-2020 were identified from the Center for International Blood and Marrow Transplant Research database; 106 and 169 patients were included from the ZUMA-1 and ZUMA-7 clinical trials, respectively. Adjusted odds ratio (OR) and hazard ratio (HR) for race and ethnicity groups are reported. Overall survival was consistent across race/ethnicity groups. However, non-Hispanic (NH) Black patients had lower overall response rate (OR, 0.37, [95% CI, 0.22-0.63]) and lower complete response rate (OR, 0.57, [95% CI, 0.33-0.97]) than NH-white patients. NH-Black patients also had a shorter progression-free survival versus NH-white (HR, 1.41, [95% CI, 1.04-1.90]) and NH-Asian patients (HR, 1.67, [95% CI, 1.08-2.59]). NH-Asian patients had a longer duration of response compared with NH-white (HR, 0.56, [95% CI, 0.33-0.94]) and Hispanic patients (HR, 0.54, [95% CI, 0.30-0.97]). There was no difference in cytokine release syndrome by race/ethnicity; however, higher rates of any-grade ICANS were observed in NH-white patients compared with other patients. These results provide important context when treating patients with R/R LBCL with axi-cel across different racial and ethnic groups. ZUMA-1 (NCT02348216) and ZUMA-7 (NCT03391466), both registered on ClinicalTrials.gov.

2.
Blood ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635788

RESUMEN

Human herpesvirus-6B (HHV-6B) reactivation and disease are increasingly reported after CAR-T-cell therapy (CARTx). HHV-6 reactivation in the CAR-T-cell product was recently reported, raising questions about product and patient management. Due to overlapping manifestations with immune effector cell-associated neurotoxicity syndrome, diagnosing HHV-6B encephalitis is challenging. We provide two lines of evidence assessing the incidence and outcomes of HHV-6B after CARTx. First, in a prospective study with weekly HHV-6B testing for up to 12 weeks post-infusion, HHV-6B reactivation occurred in eight of 89 participants; three had chromosomally integrated HHV-6 and were excluded, resulting in a cumulative incidence of HHV-6B reactivation of 6% (95% confidence interval (CI), 2.2-12.5%). HHV-6B detection was low level (median peak, 435 copies/mL; IQR, 164-979) and did not require therapy. Second, we retrospectively analyzed HHV-6B detection in blood and/or cerebrospinal fluid (CSF) within 12 weeks post-infusion in CARTx recipients. Of 626 patients, 24 had symptom-driven plasma testing with detection in one. Among 34 patients with CSF HHV-6 testing, one patient had possible HHV-6 encephalitis for a cumulative incidence of 0.17% (95% CI, 0.02-0.94%), although symptoms improved without treatment. Our data demonstrate that HHV-6B reactivation and disease are infrequent after CARTx. Routine HHV-6 monitoring is not warranted.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38627450

RESUMEN

Hematologic toxicity frequently complicates chimeric antigen receptor (CAR) T-cell therapy, resulting in significant morbidity and mortality. In an effort to standardize reporting, the European Hematology Association (EHA) and European Society of Blood and Marrow Transplantation (EBMT) devised the immune effector cell-associated hematotoxicity (ICAHT) grading system, distinguishing between early (day 0-30) and late (after day +30) events based on neutropenia depth and duration. However, manual implementation of ICAHT grading criteria is time-consuming and susceptible to subjectivity and error. To address these challenges, we introduce a novel computational approach, utilizing the R programming language, to automate early and late ICAHT grading. Given the complexities of early ICAHT grading, we benchmarked our approach both manually and computationally in two independent cohorts totaling 1251 patients. Our computational approach offers significant implications by streamlining grading processes, reducing manual time and effort, and promoting standardization across varied clinical settings. We provide this tool to the scientific community alongside a comprehensive implementation guide, fostering its widespread adoption and enhancing reporting consistency for ICAHT.

4.
Clin Infect Dis ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427848

RESUMEN

BACKGROUND: Hematopoietic cell transplant (HCT) or chimeric antigen receptor T cell (CAR-T) therapy recipients have high morbidity from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are limited data on outcomes from SARS-CoV-2 infection shortly before cellular therapy and uncertainty whether to delay therapy. METHODS: We conducted a retrospective cohort study of patients with SARS-CoV-2 infection within 90 days prior to HCT or CAR-T therapy between January 2020 and November 2022. We characterized the kinetics of SARS-CoV-2 detection, clinical outcomes following cellular therapy, and impact on delays in cellular therapy. RESULTS: We identified 37 patients (n=15 allogeneic HCT, n=11 autologous HCT, n=11 CAR-T therapy) with SARS-CoV-2 infections within 90 days of cellular therapy. Most infections (73%) occurred between March and November 2022, when Omicron strains were prevalent. Most patients had asymptomatic (27%) or mild (68%) coronavirus disease 2019 (COVID-19). SARS-CoV-2 positivity lasted a median of 20.0 days [IQR, 12.5-26.25]. The median time from first positive SARS-CoV-2 test to cellular therapy was 45 days [IQR, 37.75-70]; one patient tested positive on the day of infusion. After cellular therapy, no patients had recrudescent SARS-CoV-2 infection or COVID-19-related complications. Cellular therapy delays related to SARS-CoV-2 infection occurred in 70% of patients for a median of 37 days. Delays were more common after allogeneic (73%) and autologous (91%) HCT compared to CAR-T cell therapy (45%). CONCLUSIONS: Patients with asymptomatic or mild COVID-19 may not require prolonged delays in cellular therapy in the context of contemporary circulating variants and availability of antiviral therapies.

6.
Clin Infect Dis ; 78(4): 1022-1032, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37975819

RESUMEN

BACKGROUND: The epidemiology of cytomegalovirus (CMV) after chimeric antigen receptor-modified T-cell immunotherapy (CARTx) is poorly understood owing to a lack of routine surveillance. METHODS: We prospectively enrolled 72 adult CMV-seropositive CD19-, CD20-, or BCMA-targeted CARTx recipients and tested plasma samples for CMV before and weekly up to 12 weeks after CARTx. We assessed CMV-specific cell-mediated immunity (CMV-CMI) before and 2 and 4 weeks after CARTx, using an interferon γ release assay to quantify T-cell responses to IE-1 and pp65. We tested pre-CARTx samples to calculate a risk score for cytopenias and infection (CAR-HEMATOTOX). We used Cox regression to evaluate CMV risk factors and evaluated the predictive performance of CMV-CMI for CMV reactivation in receiver operator characteristic curves. RESULTS: CMV was detected in 1 patient (1.4%) before and in 18 (25%) after CARTx, for a cumulative incidence of 27% (95% confidence interval, 16.8-38.2). The median CMV viral load (interquartile range) was 127 (interquartile range, 61-276) IU/mL, with no end-organ disease observed; 5 patients received preemptive therapy based on clinical results. CMV-CMI values reached a nadir 2 weeks after infusion and recovered to baseline levels by week 4. In adjusted models, BCMA-CARTx (vs CD19/CD20) and corticosteroid use for >3 days were significantly associated with CMV reactivation, and possible associations were detected for lower week 2 CMV-CMI and more prior antitumor regimens. The cumulative incidence of CMV reactivation almost doubled when stratified by BCMA-CARTx target and use of corticosteroids for >3 days (46% and 49%, respectively). CONCLUSIONS: CMV testing could be considered between 2 and 6 weeks in high-risk CARTx recipients.


Asunto(s)
Infecciones por Citomegalovirus , Receptores Quiméricos de Antígenos , Adulto , Humanos , Citomegalovirus , Antígeno de Maduración de Linfocitos B , Inmunidad Celular , Tratamiento Basado en Trasplante de Células y Tejidos
7.
Blood Adv ; 8(2): 453-467, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37903325

RESUMEN

ABSTRACT: More than half of the patients treated with CD19-targeted chimeric antigen receptor (CAR) T-cell immunotherapy for large B-cell lymphoma (LBCL) do not achieve durable remission, which may be partly due to PD-1/PD-L1-associated CAR T-cell dysfunction. We report data from a phase 1 clinical trial (NCT02706405), in which adults with LBCL were treated with autologous CD19 CAR T cells (JCAR014) combined with escalating doses of the anti-PD-L1 monoclonal antibody, durvalumab, starting either before or after CAR T-cell infusion. The addition of durvalumab to JCAR014 was safe and not associated with increased autoimmune or immune effector cell-associated toxicities. Patients who started durvalumab before JCAR014 infusion had later onset and shorter duration of cytokine release syndrome and inferior efficacy, which was associated with slower accumulation of CAR T cells and lower concentrations of inflammatory cytokines in the blood. Initiation of durvalumab before JCAR014 infusion resulted in an early increase in soluble PD-L1 (sPD-L1) levels that coincided with the timing of maximal CAR T-cell accumulation in the blood. In vitro, sPD-L1 induced dose-dependent suppression of CAR T-cell effector function, which could contribute to inferior efficacy observed in patients who received durvalumab before JCAR014. Despite the lack of efficacy improvement and similar CAR T-cell kinetics early after infusion, ongoing durvalumab therapy after JCAR014 was associated with re-expansion of CAR T cells in the blood, late regression of CD19+ and CD19- tumors, and enhanced duration of response. Our results indicate that the timing of initiation of PD-L1 blockade is a key variable that affects outcomes after CD19 CAR T-cell immunotherapy for adults with LBCL.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Adulto , Humanos , Antígeno B7-H1 , Síndrome de Liberación de Citoquinas/etiología , Inmunoterapia , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/etiología
8.
Blood Adv ; 7(22): 6990-7005, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774014

RESUMEN

High response rates have been reported after CD19-targeted chimeric antigen receptor-modified (CD19 CAR) T-cell therapy for relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL), yet the factors associated with duration of response in this setting are poorly characterized. We analyzed long-term outcomes in 47 patients with R/R CLL and/or Richter transformation treated on our phase 1/2 clinical trial of CD19 CAR T-cell therapy with an updated median follow-up of 79.6 months. Median progression-free survival (PFS) was 8.9 months, and the 6-year PFS was 17.8%. Maximum standardized uptake value (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.07-1.23; P < .001) and bulky disease (≥5 cm; HR, 2.12; 95% CI, 1.06-4.26; P = .034) before lymphodepletion were associated with shorter PFS. Day +28 complete response by positron emission tomography-computed tomography (HR, 0.13; 95% CI, 0.04-0.40; P < .001), day +28 measurable residual disease (MRD) negativity by multiparameter flow cytometry (HR, 0.08; 95% CI, 0.03-0.22; P < .001), day +28 MRD negativity by next-generation sequencing (HR, 0.21; 95% CI, 0.08-0.51; P < .001), higher peak CD8+ CAR T-cell expansion (HR, 0.49; 95% CI; 0.36-0.68; P < .001), higher peak CD4+ CAR T-cell expansion (HR, 0.47; 95% CI; 0.33-0.69; P < .001), and longer CAR T-cell persistence (HR, 0.56; 95% CI, 0.44-0.72; P < .001) were associated with longer PFS. The 6-year duration of response and overall survival were 26.4% and 31.2%, respectively. CD19 CAR T-cell therapy achieved durable responses with curative potential in a subset of patients with R/R CLL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD19 , Inmunoterapia Adoptiva/métodos , Leucemia Linfocítica Crónica de Células B/etiología , Receptores de Antígenos de Linfocitos T/genética
9.
Lancet Oncol ; 24(7): 811-822, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414012

RESUMEN

BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma. METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals. FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached. INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials. FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Masculino , Humanos , Femenino , Mieloma Múltiple/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva/efectos adversos , Linfocitos T
11.
Transplant Cell Ther ; 29(7): 430-437, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031746

RESUMEN

Chimeric antigen receptor-engineered (CAR)-T cell therapy remains limited by significant toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The optimal management of severe and/or refractory CRS/ICANS remains ill-defined. Anakinra has emerged as a promising agent based on preclinical data, but its safety and efficacy in CAR-T therapy recipients are unknown. The primary objective of this study was to evaluate the safety of anakinra to treat refractory CRS and ICANS after CAR-T therapy. The secondary objective was to evaluate the impact of key treatment-, patient-, and disease-related variables on the time to CRS/ICANS resolution and treatment-related mortality (TRM). We retrospectively analyzed the outcomes of 43 patients with B cell or plasma cell malignancies treated with anakinra for refractory CRS or ICANS at 9 institutions in the United States and Spain between 2019 and 2022. Cause-specific Cox regression was used to account for competing risks. Multivariable cause-specific Cox regression was used to estimate the effect of anakinra dose on outcomes while minimizing treatment allocation bias by including age, CAR-T product, prelymphodepletion (pre-LD) ferritin, and performance status. Indications for anakinra treatment were grade ≥2 ICANS with worsening or lack of symptom improvement despite treatment with high-dose corticosteroids (n = 40) and grade ≥2 CRS with worsening symptoms despite treatment with tocilizumab (n = 3). Anakinra treatment was feasible and safe; discontinuation of therapy because of anakinra-related side effects was reported in only 3 patients (7%). The overall response rate (ORR) to CAR-T therapy was 77%. The cumulative incidence of TRM in the whole cohort was 7% (95% confidence interval [CI], 2% to 17%) at 28 days and 23% (95% CI, 11% to 38%) at 60 days after CAR-T infusion. The cumulative incidence of TRM at day 28 after initiation of anakinra therapy was 0% in the high-dose (>200 mg/day i.v.) recipient group and 47% (95% CI, 20% to 70%) in the low-dose (100 to 200 mg/day s.c. or i.v.) recipient group. The median cumulative incidence of CRS/ICANS resolution from the time of anakinra initiation was 7 days in the high-dose group and was not reached in the low-dose group, owing to the high TRM in this group. Univariate Cox modeling suggested a shorter time to CRS/ICANS resolution in the high-dose recipients (hazard ratio [HR], 2.19; 95% CI, .94 to 5.12; P = .069). In a multivariable Cox model for TRM including age, CAR-T product, pre-LD ferritin level, and pre-LD Karnofsky Performance Status (KPS), higher anakinra dose remained associated with lower TRM (HR, .41 per 1 mg/kg/day increase; 95% CI, .17 to .96; P = .039. The sole factor independently associated with time to CRS/ICANS resolution in a multivariable Cox model including age, CAR-T product, pre-LD ferritin and anakinra dose was higher pre-LD KPS (HR, 1.05 per 10% increase; 95% CI, 1.01 to 1.09; P = .02). Anakinra treatment for refractory CRS or ICANS was safe at doses up to 12 mg/kg/day i.v. We observed an ORR of 77% after CAR-T therapy despite anakinra treatment, suggesting a limited impact of anakinra on CAR-T efficacy. Higher anakinra dose may be associated with faster CRS/ICANS resolution and was independently associated with lower TRM. Prospective comparative studies are needed to confirm our findings.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Estudios Prospectivos , Estudios Retrospectivos , Células Plasmáticas , Ferritinas , Tratamiento Basado en Trasplante de Células y Tejidos
12.
Blood Adv ; 7(14): 3516-3529, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36735393

RESUMEN

Chimeric antigen receptor T-cell therapy (CART) has extended survival of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). However, limited durability of response and prevalent toxicities remain problematic. Identifying patients who are at high risk of disease progression, toxicity, and death would inform treatment decisions. Although the cumulative illness rating scale (CIRS) has been shown to correlate with survival in B-cell malignancies, no prognostic score has been independently validated in CART recipients. We retrospectively identified 577 patients with relapsed/refractory DLBCL indicated for CART at 9 academic centers to form a learning cohort (LC). Random survival forest modeling of overall survival (OS) and progression-free survival (PFS) was performed to determine the most influential CIRS organ systems and severity grades. The presence of a severe comorbidity (CIRS score ≥ 3) in the respiratory, upper gastrointestinal, hepatic, or renal system, herein termed "Severe4," had the greatest impact on post-CART survival. Controlling for other prognostic factors (number of prior therapies, Eastern Cooperative Oncology Group performance status, BCL6 translocation, and molecular subtype), Severe4 was strongly associated with shorter PFS and OS in the LC and in an independent single-center validation cohort (VC). Severe4 was also a significant predictor of grade ≥3 cytokine release syndrome in the LC, while maintaining this trend in the VC. Thus, our results indicate that adverse outcomes for patients with DLBCL meant to receive CART can be predicted using a simplified CIRS-derived comorbidity index.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Pronóstico , Inmunoterapia Adoptiva/efectos adversos , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Comorbilidad
13.
Bone Marrow Transplant ; 58(4): 353-359, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36575360

RESUMEN

Post-transplant lymphoproliferative disorder (PTLD) is a leading cause of cancer death in solid organ transplant recipients (SOTRs). Relapsed or refractory (R/R) PTLD portends a high risk of death and effective management is not well established. CD19-targeted CAR-T cell therapy has been utilized, but the risks and benefits are unknown. We report the first case of diffuse large B-cell lymphoma (DLBCL) PTLD treated with lisocabtagene maraleucel and present a systematic literature review of SOTRs with PTLD treated with CD19 CAR-T therapy. Our patient achieved a complete response (CR) with limited toxicity but experienced a CD19+ relapse 8 months after infusion despite CAR-T persistence. Literature review revealed 14 DLBCL and 2 Burkitt lymphoma PTLD cases treated with CD19 CAR-T cells. Kidney (n = 12), liver (n = 2), heart (n = 2), and pancreas after kidney (n = 1) transplant recipients were analyzed. The objective response rate (ORR) was 82.4% (14/17), with 58.5% (10/17) CRs and a 6.5-month median duration of response. Among kidney transplant recipients, the ORR was 91.7% (11/12). Allograft rejection occurred in 23.5% (4/17). No graft failure occurred. Our analysis suggests that CD19 CAR-T therapy offers short-term effectiveness and manageable toxicity in SOTRs with R/R PTLD. Further investigation through larger datasets and prospective study is needed.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Trastornos Linfoproliferativos , Trasplante de Órganos , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD19 , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/patología , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/terapia , Recurrencia Local de Neoplasia , Trasplante de Órganos/efectos adversos , Receptores de Trasplantes
14.
Blood Adv ; 7(11): 2479-2493, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36332004

RESUMEN

Chimeric antigen receptor (CAR)-modified T-cell therapies targeting CD19 represent a new treatment option for patients with relapsed/refractory (R/R) B-cell malignancies. However, CAR T-cell therapy fails to elicit durable responses in a significant fraction of patients. Limited in vivo proliferation and survival of infused CAR T cells are key causes of failure. In a phase 1/2 clinical trial of CD19 CAR T cells for B-cell malignancies (#NCT01865617), low serum interleukin 15 (IL-15) concentration after CAR T-cell infusion was associated with inferior CAR T-cell kinetics. IL-15 supports T-cell proliferation and survival, and therefore, supplementation with IL-15 may enhance CAR T-cell therapy. However, the clinical use of native IL-15 is challenging because of its unfavorable pharmacokinetic (PK) and toxicity. NKTR-255 is a polymer-conjugated IL-15 that engages the entire IL-15 receptor complex (IL-15Rα/IL-2Rßγ) and exhibits reduced clearance, providing sustained pharmacodynamic (PD) responses. We investigated the PK and immune cell PDs in nonhuman primates treated with NKTR-255 and found that NKTR-255 enhanced the in vivo proliferation of T cells and natural killer cells. In vitro, NKTR-255 induced dose-dependent proliferation and accumulation of human CD19 CAR T cells, especially at low target cell abundance. In vivo studies in lymphoma-bearing immunodeficient mice demonstrated enhanced antitumor efficacy of human CD19 CAR T cells. In contrast to mice treated with CAR T cells alone, those that received CAR T cells and NKTR-255 had markedly higher CAR T-cell counts in the blood and marrow that were sustained after tumor clearance, without evidence of persistent proliferation or ongoing activation/exhaustion as assessed by Ki-67 and inhibitory receptor coexpression. These data support an ongoing phase 1 clinical trial of combined therapy with CD19 CAR T cells and NKTR-255 for R/R B-cell malignancies.


Asunto(s)
Interleucina-15 , Receptores de Antígenos de Linfocitos T , Humanos , Animales , Ratones , Recurrencia Local de Neoplasia , Linfocitos T , Inmunoterapia , Antígenos CD19
17.
medRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38196603

RESUMEN

The prevalence and burden of autoimmune and autoantibody mediated disease is increasing worldwide, yet most disease etiologies remain unclear. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leverage advances in programmable-phage immunoprecipitation (PhIP-Seq) methodology to explore the modulation, or lack thereof, of proteome-wide autoantibody profiles in both health and disease. We demonstrate that each individual, regardless of disease state, possesses a distinct set of autoreactivities constituting a unique immunological fingerprint, or "autoreactome", that is remarkably stable over years. In addition to uncovering important new biology, the autoreactome can be used to better evaluate the relative effectiveness of various therapies in altering autoantibody repertoires. We find that therapies targeting B-Cell Maturation Antigen (BCMA) profoundly alter an individual's autoreactome, while anti-CD19 and CD-20 therapies have minimal effects, strongly suggesting a rationale for BCMA or other plasma cell targeted therapies in autoantibody mediated diseases.

18.
J Cell Mol Med ; 26(24): 5976-5983, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36453136

RESUMEN

Chimeric antigen receptor T-cell (CAR T) therapy has shown promising efficacy in relapsed and refractory diffuse large B cell lymphoma (DLBCL). While most patients undergo CAR T infusion with active disease, the impact of some clinical variables, such as responsiveness to the pre-CAR T chemotherapy on the response to CAR T, is unknown. In this single-institution study, we studied the impact of several pre-CAR T variables on the post-CAR outcomes. Sixty patients underwent apheresis for axicabtagene-ciloleucel (axi-cel) and 42 of them (70.0%) had primary refractory disease. Bridging therapy between apheresis and lymphodepletion was given in 34 patients (56.7%). After axi-cel, the overall response rate was 63.3%. Responsiveness to the immediate pre-CAR T therapy did not show a significant association with response to axi-cel, progression-free (PFS) or overall (OS) survival. Multivariable analysis determined that bulky disease before lymphodepletion was independently associated with inferior outcomes, and patients that presented with high-burden disease unresponsive to immediate pre-CAR T therapy had a dismal outcome. This data supports proceeding with treatment in CAR T candidates regardless of their response to immediate pre-CAR T therapy. Interim therapeutic interventions should be considered in patients who have known risk factors for poor outcomes (bulky disease, high LDH).


Asunto(s)
Productos Biológicos , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD19 , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfocitos T
19.
Leuk Lymphoma ; 63(12): 2918-2922, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35811554

RESUMEN

Cytopenias are important but less studied adverse events following chimeric antigen receptor-engineered T cell (CAR-T) therapy. In our analysis of patients with large cell lymphoma who received axicabtagene ciloleucel (axi-cel), we sought to determine the rate and risk factors of clinically significant short term cytopenias defined as grade ≥3 neutropenia, anemia, or thrombocytopenia, or treatment with growth factors or blood product transfusions between days 20-30 after axi-cel. Fifty-three pts received axi-cel during the study period and severe cytopenias were observed in 32 (60%) pts. Significant cytopenias were more common in non-responders (stable or progressive disease) vs. responders (partial or complete response) (100% vs. 70%; p = .01). In the multivariable model, platelet transfusion within a month before leukapheresis, number of red blood cell and platelet transfusions between leukapheresis to lymphodepletion, pre-lymphodepletion absolute neurophil count, pre-lymphodepletion lactate dehydrogenase, and number of dexamethasone treatments after CAR-T were significantly associated with severe cytopenias after axi-cel.


Asunto(s)
Anemia , Productos Biológicos , Linfoma Folicular , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Trombocitopenia , Humanos , Antígenos CD19/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/patología , Linfoma Folicular/etiología , Trombocitopenia/inducido químicamente , Anemia/inducido químicamente
20.
Expert Rev Hematol ; 15(4): 305-320, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385358

RESUMEN

INTRODUCTION: The unprecedented success of chimeric antigen receptor (CAR)-T-cell therapy in the management of B-cell malignancies comes with a price of specific side effects. Healthy B-cell depletion is an anticipated 'on-target' 'off-tumor' side effect and can contribute to severe and prolonged hypogammaglobulinemia. Evidence-based guidelines for the use of immunoglobulin replacement therapy (IGRT) for infection prevention are lacking in this population. AREAS COVERED: This article reviews the mechanisms and epidemiology of hypogammaglobulinemia and antibody deficiency, association with infections, and strategies to address these issues in CD19- and BCMA-CAR-T-cell recipients. EXPERT OPINION: CD19 and BCMA CAR-T-cell therapy result in unique immune deficits due to depletion of specific B-lineage cells and may require different infection prevention strategies. Hypogammaglobulinemia before and after CAR-T-cell therapy is frequent, but data on the efficacy and cost-effectiveness of IGRT are lacking. Monthly IGRT should be prioritized for patients with severe or recurrent bacterial infections. IGRT may be more broadly necessary to prevent infections in BCMA-CAR-T-cell recipients and children with severe hypogammaglobulinemia irrespective of infection history. Vaccinations are indicated to augment humoral immunity and can be immunogenic despite cytopenias; re-vaccination(s) may be required. Controlled trials are needed to better understand the role of IGRT and vaccines in this population.


Asunto(s)
Agammaglobulinemia , Neoplasias , Receptores Quiméricos de Antígenos , Agammaglobulinemia/etiología , Agammaglobulinemia/terapia , Antígeno de Maduración de Linfocitos B , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...